Saltar para: Posts [1], Pesquisa e Arquivos [2]

http://cyto.blogs.sapo.pt

Espaço de publicação e discussão sobre oncologia. GBM IMMUNOTHERAPY ONCO-VIRUS ONCOLOGY CANCER CHEMOTHERAPY RADIOTHERAPY


Quarta-feira, 19.08.15

Inflammation from diets deficient in nutrients contribute to weight despite intake of macronutrients

 

Inflammation from diets deficient in nutrients contribute to weight despite intake of macronutrients

Published on August 6, 2015 at 8:41 AM ·

If you are watching what you eat, working out, and still not seeing improvements in your cholesterol, blood pressure, blood sugar, etc., here's some hope. A new report appearing in the August 2015 issue of The FASEB Journal suggests that inflammation induced by deficiencies in vitamins and minerals might be the culprit. In this report, researchers show that - in some people - improvement results in many of the major markers of health when nutritional deficiencies are corrected. Some even lost weight without a change in their diet or levels of activity.

"It is well known that habitual consumption of poor diets means increased risk of future disease, but clearly this is not a compelling enough reason for many to improve their eating habits," said Bruce Ames, Ph.D., a senior scientist at Children's Hospital Oakland Research Institute, director of their Nutrition and Metabolism Center, and a professor emeritus of Biochemistry and Molecular Biology at the University of California, Berkeley. "However, a relatively easy intervention with something like the nutrient bar used in this study may help people to realize the positive impact that a diet with adequate nutrition can have in their daily lives, which may be a stronger incentive for change."

To make their Ames and colleagues undertook three clinical trials in which adults ate two nutrient bars each day for two months. Participants acted as their own controls, meaning that changes in a wide variety of biochemical (e.g., HDL-c, LDL-c, insulin) and physical (e.g., blood pressure, weight) measurements were recorded in each individual over the two-month period. People who were overweight/obese moved in a healthier metabolic direction (e.g., improved HDL, LDL, insulin, glucose, etc.), and some lost weight by just eating small, low-calorie, nutrient bars each day for two months, without any additional requirements.

"If being healthy was as simple as 'losing weight' or 'keeping thin,' our ancient ancestors who lived in times of extreme food scarcity might still be with us today," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This report shows that what you eat is as important, if not more, than how much you eat and how many calories you burn in the gym."

Source:

Federation of American Societies for Experimental Biology

Autoria e outros dados (tags, etc)

por cyto às 11:56

Quinta-feira, 23.07.15

Researchers find easy way to produce carbon nanoparticles that can carry drugs to targeted tissues

 

Researchers find easy way to produce carbon nanoparticles that can carry drugs to targeted tissues

Published on June 19, 2015 at 3:57 AM ·

Researchers have found an easy way to produce carbon nanoparticles that are small enough to evade the body's immune system, reflect light in the near-infrared range for easy detection, and carry payloads of pharmaceutical drugs to targeted tissues.

Unlike other methods of making carbon nanoparticles - which require expensive equipment and purification processes that can take days - the new approach generates the particles in a few hours and uses only a handful of ingredients, including store-bought molasses.

The researchers, led by University of Illinois bioengineering professors Dipanjan Pan and Rohit Bhargava, report their findings in the journal Small.

"If you have a microwave and honey or molasses, you can pretty much make these particles at home," Pan said. "You just mix them together and cook it for a few minutes, and you get something that looks like char, but that is nanoparticles with high luminescence. This is one of the simplest systems that we can think of. It is safe and highly scalable for eventual clinical use."

These "next-generation" carbon spheres have several attractive properties, the researchers found. They naturally scatter light in a manner that makes them easy to differentiate from human tissues, eliminating the need for added dyes or fluorescing molecules to help detect them in the body.

The nanoparticles are coated with polymers that fine-tune their optical properties and their rate of degradation in the body. The polymers can be loaded with drugs that are gradually released.

The nanoparticles also can be made quite small, less than eight nanometers in diameter (a human hair is 80,000 to 100,000 nanometers thick).

"Our immune system fails to recognize anything under 10 nanometers," Pan said. "So, these tiny particles are kind of camouflaged, I would say; they are hiding from the human immune system."

The team tested the therapeutic potential of the nanoparticles by loading them with an anti-melanoma drug and mixing them in a topical solution that was applied to pig skin.

Bhargava's laboratory used vibrational spectroscopic techniques to identify the molecular structure of the nanoparticles and their cargo.

"Raman and infrared spectroscopy are the two tools that one uses to see molecular structure," Bhargava said. "We think we coated this particle with a specific polymer and with specific drug-loading - but did we really? We use spectroscopy to confirm the formulation as well as visualize the delivery of the particles and drug molecules."

The team found that the nanoparticles did not release the drug payload at room temperature, but at body temperature began to release the anti-cancer drug. The researchers also determined which topical applications penetrated the skin to a desired depth.

In further experiments, the researchers found they could alter the infusion of the particles into melanoma cells by adjusting the polymer coatings. Imaging confirmed that the infused cells began to swell, a sign of impending cell death.

"This is a versatile platform to carry a multitude of drugs - for melanoma, for other kinds of cancers and for other diseases," Bhargava said. "You can coat it with different polymers to give it a different optical response. You can load it with two drugs, or three, or four, so you can do multidrug therapy with the same particles."

"By using defined surface chemistry, we can change the properties of these particles," Pan said. "We can make them glow at a certain wavelength and also we can tune them to release the drugs in the presence of the cellular environment. That is, I think, the beauty of the work."

Source:

University of Illinois at Urbana-Champaign

Autoria e outros dados (tags, etc)

por cyto às 22:55

Terça-feira, 21.07.15

Novel cancer drug candidate developed in Singapore advances into clinical trials

 

Novel cancer drug candidate developed in Singapore advances into clinical trials

Published on July 17, 2015 at 2:01 AM

A made-in-Singapore cancer drug has advanced into clinical trials, charting a milestone in Singapore's biomedical sciences initiative that will go towards improving the lives of cancer patients in Singapore, and worldwide. The Agency for Science, Technology and Research (A*STAR) and Duke-National University of Singapore Graduate Medical School (Duke-NUS) today announced the start of a Phase I clinical trial of novel cancer drug candidate, ETC-159. This is the first publicly-funded drug candidate discovered and developed in Singapore to advance into first-in-human trials, and will target a range of cancers. Overall, cancer is the leading cause of death in Singapore, accounting for 30 percent of deaths in 2013. Cancer has also resulted in 8.2 million deaths world-wide .

ETC-159 targets a number of cancers including colorectal, ovarian and pancreatic cancers which contribute to a significant proportion of Singapore's cancer burden. These cancers are linked to a group of cell signalling pathways known as Wnt signalling, that have been identified to promote cancer growth and spread when elevated or dysregulated. As ETC-159 is an inhibitor of these pathways, it could suppress cancer proliferation and prevent cancer progression.

This drug candidate therefore offers a promising novel and targeted cancer therapy that could shape future cancer therapeutic strategies.

ETC-159 was discovered and developed through a collaboration between A*STAR's Experimental Therapeutics Centre (ETC), Drug Discovery and Development (D3) unit and Duke-NUS since 2009. This was based on the discovery work of Prof David Virshup from Duke-NUS, who has continued to contribute to the development of the drug candidate.

The Phase I clinical trial will evaluate the safety and tolerability of ETC-159 in advanced solid tumours of up to 58 patients. The first patient was dosed on 18 June 2015.

Dr Benjamin Seet, Executive Director of A*STAR's Biomedical Research Council, said, "This breakthrough, which closely follows local company MerLion Pharmaceuticals' recent success in obtaining FDA approval for one of its drugs, marks an inflection point in Singapore's biomedical sciences initiative. Despite the protracted process of drug discovery and development, I am confident that we will see more locally developed drugs in the pipeline being tested and implemented."

Prof Ranga Rama Krishnan, Chairman of the National Medical Research Council (NMRC), Singapore, said, "The first dosing of a drug developed by A*STAR based on a scientific discovery by Duke-NUS researchers, is an example of the terrific and exciting progress that has been made when different entities come together to work on a common problem. This will lead to developing new treatments that can benefit patients in Singapore and beyond."

Prof Alex Matter, Chief Executive Officer of ETC and D3 said, "The discovery and subsequent development of this drug candidate marks a major breakthrough in cancer therapeutics. It also demonstrates the world-class drug discovery and development capabilities we have built up at ETC and D3, complemented by valued partners like Duke-NUS. We will continue to strengthen these capabilities and partnerships to continue developing a pipeline of promising drug candidates and advancing them into the clinic."

Prof David Virshup, inaugural Director of the Programme in Cancer and Stem Cell Biology at Duke-NUS, said, "As the drug candidate provides a targeted cancer therapy, it could potentially minimise side effects and make cancer treatments more bearable for cancer patients. This is a major milestone that was made possible by Singapore's ongoing investment in basic and translational biomedical research to address unmet medical needs. It is fitting that Singaporeans might be the first to benefit from this Singapore-developed drug."

A*STAR's ETC and Duke-NUS are the primary drivers of the discovery and development of the drug candidate. D3 joined the collaboration in 2013 to bring the project forward to achieve proof of concept in humans.

D3 has obtained ethics and regulatory approval for this trial from the SingHealth Centralised Institutional Review Board (CIRB) and the Singapore Health Sciences Authority (HSA) respectively. The first two sites for the trial are the National Cancer Centre Singapore (NCCS) and the National University Hospital (NUH), Singapore. Trial sites in the United States will be opened as the trial progresses.

Source:

Biomedical Sciences Institutes (BMSI)

Autoria e outros dados (tags, etc)

por cyto às 18:15

Terça-feira, 21.07.15

Single molecule appears to be central regulator driving cancer metastasis

 

Single molecule appears to be central regulator driving cancer metastasis

Published on July 14, 2015 at 6:21 AM · 

Cancer is a disease of cell growth, but most tumors only become lethal once they metastasize or spread from their first location to sites throughout the body. For the first time, researchers at Thomas Jefferson University in Philadelphia report a single molecule that appears to be the central regulator driving metastasis in prostate cancer. The study, published online July 13th in Cancer Cell, offers a target for the development of a drug that could prevent metastasis in prostate cancer, and possibly other cancers as well.

"Finding a way to halt or prevent cancer metastasis has proven elusive. We discovered that a molecule called DNA-PKcs could give us a means of knocking out major pathways that control metastasis before it begins," says Karen Knudsen, Ph.D., Director of the Sidney Kimmel Cancer Center at Thomas Jefferson University, the Hilary Koprowski Professor and Chair of Cancer Biology, Professor of Urology, Radiation Oncology, and Medical Oncology at Jefferson.

Metastasis is thought of as the last stage of cancer. The tumor undergoes a number of changes to its DNA - mutations - that make the cells more mobile, able to enter the bloodstream, and then also sticky enough to anchor down in a new location, such as the bone, the lungs, the liver or other organs, where new tumors start to grow. Although these processes are fairly well characterized, there appeared to be many non-overlapping pathways that ultimately lead to these traits.

Now, Dr. Knudsen and colleagues have shown that one molecule appears to be central to many of the processes required for a cancer to spread. That molecule is a DNA repair kinase called DNA-PKcs. The kinase rejoins broken or mutated DNA strands in a cancer cell, acting as a glue to the many broken pieces of DNA and keeping alive a cell that should normally self-destruct. In fact, previous studies had shown that DNA-PKcs was linked to treatment resistance in prostate cancer, in part because it would repair the usually lethal damage to tumors caused by radiation therapy and other treatments. Importantly, Dr. Knudsen's work showed that DNA-PKcs has other, far-reaching roles in cancer.

The researchers showed that DNA-PKcs also appears act as a master regulator of signaling networks that turn on the entire program of metastatic processes. Specifically, the DNA-PKcs modulates the Rho/Rac enzyme, which allows many cancer cell types to become mobile, as well as a number of other gene networks involved in other steps in the metastatic cascade, such as cell migration and invasion.

In addition to experiments in prostate cancer cell lines, Dr. Knudsen and colleagues also showed that in mice carrying human models of prostate cancer, they could block the development of metastases by using agents that suppress DNA-PKcs production or function. And in mice with aggressive human tumors, an inhibitor of DNA-PKcs reduced overall tumor burden in metastatic sites.

In a final analysis that demonstrated the importance of DNA-PKcs in human disease, the researchers analyzed 232 samples from prostate cancer patients for the amount of DNA-PKcs those cells contained and compared those levels to the patients' medical records. They saw that a spike in the kinase levels was a strong predictor of developing metastases and poor outcomes in prostate cancer. They also showed that DNA-PKcs was much more active in human samples of castrate-resistant prostate cancer, an aggressive and treatment-resistant form of the disease.

"These results strongly suggest that DNA-PKcs is a master regulator of the pathways and signals that lead to the development of metastases in prostate cancer, and that high levels of DNA-PKcs could predict which early stage tumors may go on to metastasize," says Dr. Knudsen.

"The finding that DNA-PKcs is a likely driver of lethal disease states was unexpected, and the discovery was made possible by key collaborations across academia and industry," explains Dr. Knudsen. Key collaborators on the study, in addition to leaders of the Sidney Kimmel Cancer Center's Prostate Program, included the laboratories of Felix Feng (University of Michigan), Scott Tomlins (University of Michigan), Owen Witte (UCLA), Cory Abate-Shen (Columbia University), Nima Sharifi (Cleveland Clinic) and Jeffrey Karnes (Mayo Clinic), and contributions from GenomeDx.

Although not all molecules are easily turned into drugs, at least one pharma company has already developed a drug that inhibits DNA-PKcs, and is currently testing it in a phase 1 study (NCT01353625). "We are enthusiastic about the next step of clinical assessment for testing DNA-PKcs inhibitors in the clinic. A new trial will commence shortly using the Celgene CC-115 DNA-PKcs inhibitor. This new trial will be for patients advancing on standard of care therapies, and will be available at multiple centers connected through the Prostate Cancer Clinical Trials Consortium, of which we are a member," explained Dr. Knudsen.

"Although the pathway to drug approval can take many years, this new trial will provide some insight into the effect of DNAP-PKcs inhibitors as anti-tumor agents. In parallel, using this kinase as a marker of severe disease may also help identify patients whose tumors will develop into aggressive metastatic disease, so that we can treat them with more aggressive therapy earlier," says Dr. Knudsen. "Given the role of DNA-PKcs in DNA repair as well as control of tumor metastasis, there will be challenges in clinical implementation, but this discovery unveils new opportunities for preventing or treating advanced disease."

Source:

Thomas Jefferson University

Autoria e outros dados (tags, etc)

por cyto às 18:05

Sábado, 04.07.15

Harvard Medical School scientists reveal structure of vesicular stomatitis virus protein

Harvard Medical School scientists reveal structure of vesicular stomatitis virus protein

Published on July 3, 2015 at 5:17 AM 

Viruses need us. In order to multiply, viruses have to invade a host cell and copy their genetic information. To do so, viruses encode their own replication machinery or components that subvert the host replication machinery to their advantage.

Ebola virus and rabies virus, two of the most lethal pathogens known to humans, belong to an order of RNA viruses that share a common strategy for copying their genomes inside their hosts. Other relatives include Marburg virus, measles, mumps, respiratory syncytial virus and vesicular stomatitis virus (VSV). Scientists study VSV, which causes acute disease in livestock but typically does not lead to illness in people, as a model for viruses that are harmful to humans.

Now a team from Harvard Medical School, using electron cryomicroscopy (imaging frozen specimens to reduce damage from electron radiation), has for the first time revealed the structure of a VSV protein at the atomic level. Called polymerase protein L, it is required for viral replication in this group of RNA viruses. The findings are published in Cell.

"We now have a better understanding of how RNA synthesis works for these viruses," said Sean Whelan, HMS professor of microbiology and immunobiology and senior author of the paper. "I think if you were trying to develop a viral-specific target to block the replication of one of these viruses, having the structure of the polymerase protein would help."

Scientists already know how these RNA viruses infect cells. They start by delivering a large protein RNA complex, which is viral RNA enclosed in a protein coat. The protein that copies viral RNA is polymerase protein L, which conducts all the enzymatic activities needed to synthesize RNA and then add a cap structure to its end to ensure it doesn't get destroyed by the cell--and to ensure that it can be translated into protein.

While researchers have known the atomic structures of the protein that coats the viral RNA, there are no data on protein L's atomic structure.

Antiviral drugs that target polymerase molecules are based in part on knowing their structure. That approach has been successful against HIV and herpes and hepatitis C viruses. But for the class of viruses known as nonsegmented negative-strand RNA viruses, finding the structure of polymerase protein L has been challenging.

The "L" stands for large. Larger proteins are often difficult to produce and to purify, Whelan said. Protein L is also flexible, with many functional fragments that are hard to isolate. The viruses evolved to make only small quantities of this protein.

Five years ago, using a lower-resolution form of electron microscopy in which the protein is visualized in the presence of negative stain, Whelan's team was able to detect at low resolution a structure that looked like a doughnut with three globular domains. Those earlier studies were informative, but the approach could not provide the atomic level of resolution the team ultimately needed.

Advances in electron cryomicroscopy encouraged them to try again. A team from Whelan's lab, working with a group led by Stephen Harrison, Giovanni Armenise - Harvard Professor of Basic Biomedical Science at HMS and a Howard Hughes Medical Institute (HHMI) investigator, was able to collect data from their viral samples that gave them much greater resolution. They also were able to align the images they collected into a three-dimensional model of polymerase protein L.

Into the density map obtained from these studies, members of the team built an atomic model of the polypeptide chain of VSV L protein. Solving this puzzle was a significant challenge and also involved the team of Nikolaus Grigorieff at HHMI's Janelia campus.

The result? An atomic level model of polymerase protein L's structure for VSV, which will form the basis for understanding the L protein of the other viruses in the order.

"The Ebola protein will look the same, the rabies protein will look the same, the other L proteins will look the same," Whelan said. "There will be some subtle differences reflecting the precise nature of amino acids, but we know that they're functionally and structurally the same."

Knowing the structure means scientists can explore how RNA synthesis is working in these viruses.

"It begins to suggest ways that we can perhaps pull apart other proteins that have not been so easy to express, such as the L protein in Ebola," Whelan said. "It doesn't mean we're going to have inhibitors immediately, but this is an important step, I think, towards that longer-term goal."

Source:

Harvard Medical School

Autoria e outros dados (tags, etc)

por cyto às 11:37

Sábado, 04.07.15

Nanoparticles packed with chemotherapy drug and coated with chitosan target cancer stem-like cells

 

Nanoparticles packed with chemotherapy drug and coated with chitosan target cancer stem-like cells

Published on July 1, 2015 at 7:35 AM ·

Nanoparticles packed with a clinically used chemotherapy drug and coated with an oligosaccharide derived from the carapace of crustaceans might effectively target and kill cancer stem-like cells, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James). Cancer stem-like cells have characteristics of stem cells and are present in very low numbers in tumors. They are highly resistant to chemotherapy and radiation and are believed to play an important role in tumor recurrence. This laboratory and animal study showed that nanoparticles coated with the oligosaccharide called chitosan and encapsulating the chemotherapy drug doxorubicin can target and kill cancer stem-like cells six times more effectively than free doxorubicin.

"Our findings indicate that this nanoparticle delivery system increases the cytotoxicity of doxorubicin with no evidence of systemic toxic side effects in our animal model," says principal investigator Xiaoming (Shawn) He, PhD, associate professor of Biomedical Engineering and a member of the OSUCCC - James Translational Therapeutics Program.

"We believe that chitosan-decorated nanoparticles could also encapsulate other types of chemotherapy and be used to treat many types of cancer."

This study showed that chitosan binds with a receptor on cancer stem-like cells called CD44, enabling the nanoparticles to target the malignant stem-like cells in a tumor.

The nanoparticles were engineered to shrink, break open, and release the anticancer drug under the acidic conditions of the tumor microenvironment and in tumor-cell endosomes and lysosomes, which cells use to digest nutrients acquired from their microenvironment.

He and his colleagues conducted the study using models called 3D mammary tumor spheroids (i.e., mammospheres) and an animal model of human breast cancer.

The study also found that although the drug-carrying nanoparticles could bind to the variant CD44 receptors on cancerous mammosphere cells, they did not bind well to the CD44 receptors that were overexpressed on noncancerous stem cells.

Source:

Ohio State University Wexner Medical Center

Autoria e outros dados (tags, etc)

por cyto às 11:21

Quinta-feira, 25.06.15

Acute Lymphoblastic Leukemia, Blood, Blood Cancer, Blood Disorder, Bone, Bone Marrow, Cancer, Cardiology, Cell, DNA, Education, Gene, Genetic, Genetics, Hematology, Hospital, Leukemia, Neurology, Neurosurgery, Oncology, Pediatrics, Platelets, Thrombocytop

Researchers track down key gene mutation responsible for causing acute lymphoblastic leukemia

Published on June 18, 2015 at 8:52 AM ·

After collecting data on a leukemia-affected family for nearly a decade, Children's Hospital of Michigan, Detroit Medical Center (DMC), Hematologist and Wayne State University School of Medicine Professor of Pediatrics Madhvi Rajpurkar, M.D., joined an international team of genetic researchers in an effort to track down a mutation partly responsible for causing the disease. Their findings, recently published in one of the world's leading science journals, have "major implications" for better understanding the genetic basis of several types of cancer, including leukemia.

Says Children's Hospital of Michigan Hematology/Oncology Researcher and Wayne State University Assistant Professor of Pediatrics Michael Callaghan, M.D., an investigator who co-authored the recently published study in Nature Genetics: "This is a very exciting new finding in cancer research - and I think a lot of the credit has to go to Dr. Rajpurkar for identifying the family (with the genetic mutation). This is a great example of how an astute clinician can help accomplish a breakthrough in research by paying careful attention to patients and then thinking long and hard about what she is seeing in the treatment room."

Two medical researchers from the Children's Hospital of Michigan and the Wayne State University School of Medicine have published the results of a nearly 10-year investigation that identified a key gene mutation that can trigger acute lymphoblastic leukemia, or ALL, and several other types of cancer.

Recently published in Nature Genetics, the findings assembled by the Children's Hospital of Michigan and Wayne State University School of Medicine duo and a team of international investigators have for the first time pinpointed a mutation that allows a lymphoblastic leukemia "precursor" to set the biochemical stage for the blood disorder.

ALL is a blood cancer that attacks an early version of white blood cells manufactured in bone marrow. Investigators have long suspected that it is caused in part by a mutation in a gene that is supposed to "turn off" excessive blood-cell growth. When the mutation suppresses the controlling mechanism that regulates the runaway growth, leukemia is often the result.

The study, "Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia," began nearly a decade ago when Dr. Rajpurkar treated a child at the Children's Hospital of Michigan for low blood platelets, known medically as "congenital thrombocytopenia." When both the child and an aunt later developed ALL - even as several other family members were diagnosed with thrombocytopenia - Dr. Rajpurkar began to suspect that there might be a genetic mutation at work in the family.

What followed was a 10-year journey through the labyrinth of the Human Genome, as the researchers worked with a growing number of genetic investigators to isolate and identify the mutation in a gene (ETV6) that regulates growth rates in bone marrow.

A key breakthrough in the quest for the genetic culprit took place when a nationally recognized expert in gene mutation - University of Colorado physician-researcher Jorge DiPaola, M.D. - joined Drs. Rajpurkar and Callaghan, and other investigators from Italy and Canada, in the effort to solve the DNA puzzle by uncovering the flaw in ETV6. The mutation discovery occurred in a core facility where the gene-sequencing took place.

While noting that "our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition," the study's authors concluded that the mutation occurs through "aberrant cellular localization" of the gene, which can result in "decreased transcriptional repression" during white blood cell formation.

"What we think that means," Dr. Callaghan said, "is that ETV6's job is to 'turn off' growth, but when you have this mutation, it can't turn it off because it's in the wrong place. It's usually supposed to sit on the DNA and keep things (including cancer) from getting made, but when you have this mutation, instead of sitting on the DNA it's sitting in a different part of the cell.... And that predisposes you to getting a (blood) cancer."

Dr. Rajpurkar, who is also the division chief of Hematology at the Children's Hospital of Michigan and an associate professor of Pediatrics at the Wayne State University School of Medicine, said she was "greatly pleased" that her decade of treating the Detroit family with the mutation eventually led to the breakthrough. "I told them that I didn't know what the family had," she said, "but that I would do my best to find out. Sometimes one has to accept uncertainty in the field of medicine, but (persistence in clinical research) pays off!"

The Children's Hospital of Michigan Pediatrician-in-Chief and chair of the Wayne State University School of Medicine Department of Pediatrics Steven E. Lipshultz, M.D., said the breakthrough was "hugely important" because it resulted in "a new association (between a genetic mutation and leukemia) that can now be scanned for.

"Because of this finding," he added, "families will eventually be counseled regarding their risk for some kinds of cancer and targeted interventions will be devised and tested."

Dr. Lipshultz also noted that the new findings in "what many physicians and researchers regard as the leading journal in the world on the molecular genetic basis of human disease" also provide "an exciting and extremely encouraging example of how research that takes place in the clinical setting can greatly improve care for patients.

"Our goal at the Children's Hospital of Michigan is to do everything we can to help achieve better outcomes for the patients we serve. This latest publication by two CHM physician-researchers and their colleagues underlines the vitally important links between treatment and research, and to see them demonstrated so compellingly inNature Genetics is quite thrilling for all of us who spend our days trying to help kids at the Children's Hospital of Michigan!"

Source:

Wayne State University - Office of the Vice President for Research

Autoria e outros dados (tags, etc)

por cyto às 11:49

Terça-feira, 23.06.15

NW Bio releases promising new data on DCVax-Direct Phase I trial for inoperable solid tumors

NW Bio releases promising new data on DCVax-Direct Phase I trial for inoperable solid tumors

Published on June 2, 2015 at 10:00 AM · 

Northwest Biotherapeutics (NASDAQ: NWBO) ("NW Bio"), a U.S. biotechnology company developing DCVax® personalized immune therapies for solid tumor cancers, over the weekend in Chicago released promising new data on their Phase I trial of DCVax-Direct for direct injection into all types of inoperable solid tumors.

The patients enrolled in the trial had late stage cancers, with an average of three inoperable tumors. The patients had failed multiple prior therapies and had a poor prognosis.

The trial enrolled 40 patients, and 39 were evaluable. A conservative treatment regimen was used. Although the patients had multiple inoperable tumors, only 1 tumor was injected with DCVax-Direct. The treatments included only 3 injections in the first 2 weeks (Day 0, 7 and 14), and up to 3 additional injections spaced months apart thereafter (Weeks 8, 16 and 32), over a total period of 8 months.

Patients typically received their first injection about 1-1/2 months after recruitment. Four patients are still in the process of completing the study visits, and data collection is ongoing on all of the patients.

The trial tested three different dose levels of DCVax-Direct, two different methods of activating the dendritic cells that comprise DCVax-Direct, and a dozen different cancers. Findings to date include encouraging survival data and substantial induction of immune checkpoint expression (PDL-1).

The webcast and presentation by Dr. Bosch can be found on the Company's website at nwbio.com/webcast

Findings to date include the following:

  • 27 of 39 patients are still alive at up to 18 months after first injection.
  • Patient survival correlates with the method of dendritic cell activation used. With the preferred method, 18 of 21 patients are still alive.
  • Treatment effects have been observed in diverse cancers, including lung, breast, colorectal, pancreatic, sarcoma, melanoma, neuro-endocrine and other cancers.
  • Patient survival correlates with the number of DCVax-Direct injections.
  • Patient survival also correlates with stabilization of disease at Week 8 (4th injection visit). Among patients treated with the preferred method of dendritic cell activation, 16 of 19 achieved stable disease (i.e., less than 25% increase in tumor size from baseline) at Week 8.

Findings to date relating to immunological responses include the following:

  • Induction of PDL-1 immune checkpoint expression was seen in 64% of evaluable patients (14 of 22) following DCVax-Direct treatment. This suggests that the tumors are putting up defenses against the immune responses induced by DCVax-Direct, and marks these patients as potential candidates for treatment with checkpoint inhibitor therapies.
  • An increase in T-cell infiltration into tumors, by functionally active T-cells, was seen following DCVax-Direct treatment.
  • Both local effects (in the injected tumor) and systemic effects were observed.

Based on the findings from the Phase I trial, the Company plans to enhance its Phase II trials in several ways, including by:

  • Using only the preferred activation method of the DCVax dendritic cells.
  • Injecting multiple inoperable tumors at each treatment visit, not just one.
  • Providing more frequent treatments and a larger total number of treatments.

The Company plans to pursue Phase II trials in non-small cell lung cancer and sarcoma, as well as a Phase II trial for multiple diverse types of cancers similar to the Phase I study. The Company also plans to expand the trial sites to include countries beyond the U.S.

"We are quite encouraged to see these results across diverse types of cancers, in late stage patients with multiple inoperable tumors who have exhausted other treatment options, and with quite a conservative DCVax-Direct treatment regimen," commented Linda Powers, CEO of NW Bio. "We are looking forward to proceeding with Phase II trials applying the lessons learned from this informative Phase I trial."

Source:

Northwest Biotherapeutics, Inc.

Autoria e outros dados (tags, etc)

por cyto às 17:20


Mais sobre mim

foto do autor


Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Pesquisar

Pesquisar no Blog  

calendário

Fevereiro 2016

D S T Q Q S S
123456
78910111213
14151617181920
21222324252627
2829