Saltar para: Posts [1], Pesquisa e Arquivos [2]

http://cyto.blogs.sapo.pt

Espaço de publicação e discussão sobre oncologia. GBM IMMUNOTHERAPY ONCO-VIRUS ONCOLOGY CANCER CHEMOTHERAPY RADIOTHERAPY


Quarta-feira, 19.08.15

Oncolytic virotherapy lends benefits to melanoma patients

Oncolytic virotherapy lends benefits to melanoma patients

Published on August 19, 2015 at 6:12 AM

Recent study published online by Melanoma Research journal indicates that melanoma patients would significantly benefit from prolonging the survival with oncolytic viroherapy treatment (http://journals.lww.com/melanomaresearch/toc/publishahead).

The study  revealed that the early stage  melanoma patients treated with oncolytic medicine Rigvir were 4 to 6 times more likely to survive than those who following the current guidelines for the treatment of melanoma were only observed.

Oncolytic virotherapy

Melanoma is one of the fastest-growing cancers and has the highest mortality rate of skin cancers. More than half of melanoma patients experience progression of disease within next 3 years after diagnosis. Unfortunately, current clinical practice guidelines for early stage melanoma patients provide few, if any, recommendations for treatment after surgery.

Rigvir is a live nonpathogenic enterovirus, adapted and selected for melanoma that has not been genetically modified. Rigvir has oncotropic and oncolytic properties. Rigvir finds and infects tumour cells, a process called oncotropism. Then, Rigvir replicates in tumour cells and destroys them. This process is called oncolysis.

Both of these processes, oncotropism and oncolysis, are selective for tumour cells and normal healthy cells are minimally, if at all, affected. Moreover, Rigvir demonstrated an outstanding safety profile because there was no record of any untoward side effect from Rigvir treatment or its discontinuation.

Melanoma treatment using oncolytic virus is a cancer treatment option that has been observed for over a century and is presently being studied intensively. The effect of viruses on cancers, including melanoma, has been tested in clinical trials, however the effectivness of an approved and marketed virus has not yet  been shown in a clinical setting.

Rigvir is the first oncolytic virus in the world with anticancer and immunomodulating effects, which is registered for cancer virotherapy and introduced in medical practice. Rigvir was approved in 2004 in Latvia for melanoma therapy and since 2011 is fully reimbursed by government for skin melanoma patients here. Since 2015 Rigvir is included in the national guidelines for the skin cancer and melanoma treatment.

Source:

International Virotherapy Center

Autoria e outros dados (tags, etc)

por cyto às 12:10

Quinta-feira, 13.08.15

Activated T cell therapy developed for advanced melanoma

 

Activated T cell therapy developed for advanced melanoma

 

T cells from patients with melanoma can trigger a protective immune response against the disease according to data from an in vitro and animal study. The findings were published in the Journal of Immunotherapy (2015; doi:10.1097/CJI.0000000000000078).

The new findings demonstrate that T cells derived from lymph nodes of patients with melanoma can be expanded in number and activated in the laboratory for intravenous administration in the treatment of patients.

 The research team was led by Julian Kim, MD, Chief Medical Officer at University Hospitals Case Medical Center Seidman Cancer Center and at Case Western Reserve University School of Medicine in Cleveland, Ohio. 

They developed a novel technique to generate large numbers of activated T cells that can be transferred back into the same patient to stimulate the immune system to attack the cancer.

"This study is unique in that the source of T cells for therapy is derived from the lymph node, which is the natural site of the immune response against pathogens as well as cancer," said Kim. "These encouraging results provide the rationale to start testing the transfer of activated T cells in a human clinical trial."

Kim and his team developed a new method to grow and activate immune cells in a two-week culture. Immune cells are extracted from lymph nodes that have been exposed to growing melanoma in the patient's body.

Rather than trying to activate the T cells while in the body, the lymph nodes are surgically removed so that the activation process and growth of the T cells can be tightly regulated in a laboratory.

This novel approach to cancer treatment, termed adoptive immunotherapy, is only offered at a few institutions worldwide.

These promising findings have led to the recent launch of a new phase 1 human clinical trial at UH Seidman Cancer Center in patients with advanced melanoma.

 

RELATED: Mechanism discovered for BRAF inhibitor resistance in melanoma

The research leading to the clinical trial was funded by the National Institutes of Health and the Case Comprehensive Cancer Center.

The trial is being supported by University Hospitals as well as a significant philanthropic effort including the Immunogene Therapy Fund, the Paula and Ronald Raymond Fund, and the Kathryn and Paula Miller Family Fund.

"The infusion of activated T cells has demonstrated promising results and is an area of great potential for the treatment of patients with cancer," said Kim.

"We are really excited that our method of activating and expanding T cells is practical and may be ideal for widespread use. Our goal is to eventually combine these T cells with other immune therapies which will result in cures."

Additionally, the team has been researching the possibility of using lymph nodes from patients with pancreatic cancer to develop T cell therapy. Their goal is to expand the program and eventually study other tumor types including lung, colorectal, and breast cancers.

Autoria e outros dados (tags, etc)

por cyto às 20:17

Quinta-feira, 23.07.15

Researchers find easy way to produce carbon nanoparticles that can carry drugs to targeted tissues

 

Researchers find easy way to produce carbon nanoparticles that can carry drugs to targeted tissues

Published on June 19, 2015 at 3:57 AM ·

Researchers have found an easy way to produce carbon nanoparticles that are small enough to evade the body's immune system, reflect light in the near-infrared range for easy detection, and carry payloads of pharmaceutical drugs to targeted tissues.

Unlike other methods of making carbon nanoparticles - which require expensive equipment and purification processes that can take days - the new approach generates the particles in a few hours and uses only a handful of ingredients, including store-bought molasses.

The researchers, led by University of Illinois bioengineering professors Dipanjan Pan and Rohit Bhargava, report their findings in the journal Small.

"If you have a microwave and honey or molasses, you can pretty much make these particles at home," Pan said. "You just mix them together and cook it for a few minutes, and you get something that looks like char, but that is nanoparticles with high luminescence. This is one of the simplest systems that we can think of. It is safe and highly scalable for eventual clinical use."

These "next-generation" carbon spheres have several attractive properties, the researchers found. They naturally scatter light in a manner that makes them easy to differentiate from human tissues, eliminating the need for added dyes or fluorescing molecules to help detect them in the body.

The nanoparticles are coated with polymers that fine-tune their optical properties and their rate of degradation in the body. The polymers can be loaded with drugs that are gradually released.

The nanoparticles also can be made quite small, less than eight nanometers in diameter (a human hair is 80,000 to 100,000 nanometers thick).

"Our immune system fails to recognize anything under 10 nanometers," Pan said. "So, these tiny particles are kind of camouflaged, I would say; they are hiding from the human immune system."

The team tested the therapeutic potential of the nanoparticles by loading them with an anti-melanoma drug and mixing them in a topical solution that was applied to pig skin.

Bhargava's laboratory used vibrational spectroscopic techniques to identify the molecular structure of the nanoparticles and their cargo.

"Raman and infrared spectroscopy are the two tools that one uses to see molecular structure," Bhargava said. "We think we coated this particle with a specific polymer and with specific drug-loading - but did we really? We use spectroscopy to confirm the formulation as well as visualize the delivery of the particles and drug molecules."

The team found that the nanoparticles did not release the drug payload at room temperature, but at body temperature began to release the anti-cancer drug. The researchers also determined which topical applications penetrated the skin to a desired depth.

In further experiments, the researchers found they could alter the infusion of the particles into melanoma cells by adjusting the polymer coatings. Imaging confirmed that the infused cells began to swell, a sign of impending cell death.

"This is a versatile platform to carry a multitude of drugs - for melanoma, for other kinds of cancers and for other diseases," Bhargava said. "You can coat it with different polymers to give it a different optical response. You can load it with two drugs, or three, or four, so you can do multidrug therapy with the same particles."

"By using defined surface chemistry, we can change the properties of these particles," Pan said. "We can make them glow at a certain wavelength and also we can tune them to release the drugs in the presence of the cellular environment. That is, I think, the beauty of the work."

Source:

University of Illinois at Urbana-Champaign

Autoria e outros dados (tags, etc)

por cyto às 22:55

Terça-feira, 21.07.15

clinical study data on ImmunTraCkeR assay in the Journal for ImmunoTherapy of Cancer

 

ImmunID announces publication of clinical study data on ImmunTraCkeR assay in the Journal for ImmunoTherapy of Cancer

Published on July 8, 2015 at 10:02 AM 

ImmunID today announced the publication of a short report in the Journal for ImmunoTherapy of Cancer (JITC) showing that the analysis of peripheral T cell receptor diversity using the company's ImmunTraCkeR® assay is associated with clinical outcomes following Ipilimumab treatment in metastatic melanoma. Results from the study, conducted at Memorial Sloan Kettering Cancer Center, were first presented at the SITC 2014 Annual Meeting.

Study results suggest that ImmunTraCkeR® may ultimately be used as a companion diagnostic for immune checkpoint agents, to determine eligibility to the treatment.

"We are delighted to have been selected by the JITC editorial board for publication. ImmunID's mission is to add precision to the immuno-oncology revolution by personalizing immunotherapy. A large multicenter study is currently underway (Predict-ID Melanoma, France) with the aim to validate prediction capabilities of ImmunTraCkeR® for response to immune checkpoint inhibitors. This is an area of high unmet medical need and could be game-changing for patients," said Bernhard Sixt, ImmunID's Chairman and Chief Executive Officer.

Autoria e outros dados (tags, etc)

por cyto às 18:06

Sábado, 04.07.15

new immunotherapy treatment for cancer patients

 

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

Published on June 27, 2015 at 2:15 AM · 

Cancer Treatment Centers of America® (CTCA) at Western Regional Medical Center (Western) in Goodyear, Arizona, has begun a new Phase Ib/II clinical trial using a new immunotherapy treatment for patients with advanced kidney, non-small cell lung cancer, pancreatic cancer and colorectal carcinoma.

This "NivoPlus" clinical trial combines an immunotherapy drug (nivolumab) with already FDA-approved chemotherapy drugs (temsirolimus, irinotecan, and a combination of irinotecan and capecitabine).

The addition of nivolumab is intended to activate the body's own immune system to improve on the results that otherwise might not be achieved from chemotherapy alone. This combination of chemotherapy and immunotherapy drugs is investigational in this study and is the third such combination clinical trial launched in the past year by CTCA® at Western.

There are anticipated to be up to 49 patients enrolled on the multi-arm NivoPlus study. The first patient received treatment on this study earlier this month.

"Some of these drug combinations are not available elsewhere, giving CTCA patients additional treatment options," said Dr. Glen Weiss, Director of Clinical Research and Medical Oncologist, CTCA at Western. "Our ultimate goal is to evaluate if these combinations yield improved results for our patients."

Nivolumab works by inhibiting a protein called PD-1, which otherwise blocks the body's immune system from attacking cancerous cells.

Nivolumab was approved by the Food and Drug Administration in December 2014 for the treatment of advanced melanoma and on March 4, 2015, for patients with previously treated metastatic squamous non-small cell lung cancer.

"Patients with these types of advanced-stage cancers have tumors that may be challenging to treat," said Dr. Vivek Khemka, Medical Oncologist, CTCA Western and NivoPlus Principal Investigator. "We are investigating whether combining nivolumab with these chemotherapy drugs will be a more powerful approach against their disease."

Recent data reported in the New England Journal of Medicine and Lancet demonstrates promising results with antibody-based immunostimulatory therapy in treating melanoma, renal cell carcinoma, non-small cell lung cancer and colorectal cancer. Data has also shown synergetic effects of utilizing cytotoxic chemotherapy in combination with immunostimulatory therapy. NivoPlus will build upon this data, extending treatment options to additional cancer types.

CTCA investigators have been actively researching the impact of immunotherapy, a topic prominently highlighted this year at the annual conferences of both the American Association for Cancer Research (AACR) and the American Society of Clinical Oncologists (ASCO).

At AACR, physicians described immunotherapy as now being considered an integral part of cancer biology and cancer treatment, and recent clinical successes were described as "stunning" and "unprecedented" in their ability to improve the care of cancer patients.

At ASCO, a full press briefing was devoted to the subject of immunotherapy, which was described by doctors as "one of the most exciting advances in oncology," enabling the body's own immune system to target cancer tumors and key to helping accelerate the pace of progress "and ultimately achieve cures for cancer."

Additionally, in 2013, Science magazine named cancer immunotherapy the scientific breakthrough of the year.

CTCA physicians are committed to bringing the latest technologies and advanced treatment options to their patients as quickly as possible. At the same time, CTCA patients are supported with therapies to reduce side effects, boost energy levels and keep them strong during treatment.

Source:

Cancer Treatment Centers of America

Autoria e outros dados (tags, etc)

por cyto às 11:18

Quinta-feira, 02.07.15

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

Published on June 27, 2015 at 2:15 AM · 

Cancer Treatment Centers of America® (CTCA) at Western Regional Medical Center (Western) in Goodyear, Arizona, has begun a new Phase Ib/II clinical trial using a new immunotherapy treatment for patients with advanced kidney, non-small cell lung cancer, pancreatic cancer and colorectal carcinoma.

This "NivoPlus" clinical trial combines an immunotherapy drug (nivolumab) with already FDA-approved chemotherapy drugs (temsirolimus, irinotecan, and a combination of irinotecan and capecitabine).

The addition of nivolumab is intended to activate the body's own immune system to improve on the results that otherwise might not be achieved from chemotherapy alone. This combination of chemotherapy and immunotherapy drugs is investigational in this study and is the third such combination clinical trial launched in the past year by CTCA® at Western.

There are anticipated to be up to 49 patients enrolled on the multi-arm NivoPlus study. The first patient received treatment on this study earlier this month.

"Some of these drug combinations are not available elsewhere, giving CTCA patients additional treatment options," said Dr. Glen Weiss, Director of Clinical Research and Medical Oncologist, CTCA at Western. "Our ultimate goal is to evaluate if these combinations yield improved results for our patients."

Nivolumab works by inhibiting a protein called PD-1, which otherwise blocks the body's immune system from attacking cancerous cells.

Nivolumab was approved by the Food and Drug Administration in December 2014 for the treatment of advanced melanoma and on March 4, 2015, for patients with previously treated metastatic squamous non-small cell lung cancer.

"Patients with these types of advanced-stage cancers have tumors that may be challenging to treat," said Dr. Vivek Khemka, Medical Oncologist, CTCA Western and NivoPlus Principal Investigator. "We are investigating whether combining nivolumab with these chemotherapy drugs will be a more powerful approach against their disease."

Recent data reported in the New England Journal of Medicine and Lancet demonstrates promising results with antibody-based immunostimulatory therapy in treating melanoma, renal cell carcinoma, non-small cell lung cancer and colorectal cancer. Data has also shown synergetic effects of utilizing cytotoxic chemotherapy in combination with immunostimulatory therapy. NivoPlus will build upon this data, extending treatment options to additional cancer types.

CTCA investigators have been actively researching the impact of immunotherapy, a topic prominently highlighted this year at the annual conferences of both the American Association for Cancer Research (AACR) and the American Society of Clinical Oncologists (ASCO).

At AACR, physicians described immunotherapy as now being considered an integral part of cancer biology and cancer treatment, and recent clinical successes were described as "stunning" and "unprecedented" in their ability to improve the care of cancer patients.

At ASCO, a full press briefing was devoted to the subject of immunotherapy, which was described by doctors as "one of the most exciting advances in oncology," enabling the body's own immune system to target cancer tumors and key to helping accelerate the pace of progress "and ultimately achieve cures for cancer."

Additionally, in 2013, Science magazine named cancer immunotherapy the scientific breakthrough of the year.

CTCA physicians are committed to bringing the latest technologies and advanced treatment options to their patients as quickly as possible. At the same time, CTCA patients are supported with therapies to reduce side effects, boost energy levels and keep them strong during treatment.

Autoria e outros dados (tags, etc)

por cyto às 11:56

Terça-feira, 23.06.15

NW Bio releases promising new data on DCVax-Direct Phase I trial for inoperable solid tumors

NW Bio releases promising new data on DCVax-Direct Phase I trial for inoperable solid tumors

Published on June 2, 2015 at 10:00 AM · 

Northwest Biotherapeutics (NASDAQ: NWBO) ("NW Bio"), a U.S. biotechnology company developing DCVax® personalized immune therapies for solid tumor cancers, over the weekend in Chicago released promising new data on their Phase I trial of DCVax-Direct for direct injection into all types of inoperable solid tumors.

The patients enrolled in the trial had late stage cancers, with an average of three inoperable tumors. The patients had failed multiple prior therapies and had a poor prognosis.

The trial enrolled 40 patients, and 39 were evaluable. A conservative treatment regimen was used. Although the patients had multiple inoperable tumors, only 1 tumor was injected with DCVax-Direct. The treatments included only 3 injections in the first 2 weeks (Day 0, 7 and 14), and up to 3 additional injections spaced months apart thereafter (Weeks 8, 16 and 32), over a total period of 8 months.

Patients typically received their first injection about 1-1/2 months after recruitment. Four patients are still in the process of completing the study visits, and data collection is ongoing on all of the patients.

The trial tested three different dose levels of DCVax-Direct, two different methods of activating the dendritic cells that comprise DCVax-Direct, and a dozen different cancers. Findings to date include encouraging survival data and substantial induction of immune checkpoint expression (PDL-1).

The webcast and presentation by Dr. Bosch can be found on the Company's website at nwbio.com/webcast

Findings to date include the following:

  • 27 of 39 patients are still alive at up to 18 months after first injection.
  • Patient survival correlates with the method of dendritic cell activation used. With the preferred method, 18 of 21 patients are still alive.
  • Treatment effects have been observed in diverse cancers, including lung, breast, colorectal, pancreatic, sarcoma, melanoma, neuro-endocrine and other cancers.
  • Patient survival correlates with the number of DCVax-Direct injections.
  • Patient survival also correlates with stabilization of disease at Week 8 (4th injection visit). Among patients treated with the preferred method of dendritic cell activation, 16 of 19 achieved stable disease (i.e., less than 25% increase in tumor size from baseline) at Week 8.

Findings to date relating to immunological responses include the following:

  • Induction of PDL-1 immune checkpoint expression was seen in 64% of evaluable patients (14 of 22) following DCVax-Direct treatment. This suggests that the tumors are putting up defenses against the immune responses induced by DCVax-Direct, and marks these patients as potential candidates for treatment with checkpoint inhibitor therapies.
  • An increase in T-cell infiltration into tumors, by functionally active T-cells, was seen following DCVax-Direct treatment.
  • Both local effects (in the injected tumor) and systemic effects were observed.

Based on the findings from the Phase I trial, the Company plans to enhance its Phase II trials in several ways, including by:

  • Using only the preferred activation method of the DCVax dendritic cells.
  • Injecting multiple inoperable tumors at each treatment visit, not just one.
  • Providing more frequent treatments and a larger total number of treatments.

The Company plans to pursue Phase II trials in non-small cell lung cancer and sarcoma, as well as a Phase II trial for multiple diverse types of cancers similar to the Phase I study. The Company also plans to expand the trial sites to include countries beyond the U.S.

"We are quite encouraged to see these results across diverse types of cancers, in late stage patients with multiple inoperable tumors who have exhausted other treatment options, and with quite a conservative DCVax-Direct treatment regimen," commented Linda Powers, CEO of NW Bio. "We are looking forward to proceeding with Phase II trials applying the lessons learned from this informative Phase I trial."

Source:

Northwest Biotherapeutics, Inc.

Autoria e outros dados (tags, etc)

por cyto às 17:20

Segunda-feira, 18.05.15

new strategy to combat cancer

CNIO researchers identify new strategy to combat cancer

Published on May 14, 2015 at 4:23 AM · 

Scientists from the Spanish National Cancer Research Centre (CNIO) have discovered a new strategy to fight cancer, which is very different from those described to date. Their work shows for the first time that telomeres -- the structures protecting the ends of the chromosomes -- may represent an effective anti-cancer target: by blocking the TRF1 gene, which is essential for the telomeres, they have shown dramatic improvements in mice with lung cancer.

"Telomere uncapping is emerging as a potential mechanism to develop new therapeutic targets for lung cancer," mention the authors with equal contribution in EMBO Molecular Medicine; Maria Garcia-Beccaria, Paula Martinez and Marinela Mendez, from the CNIO Telomeres and Telomerase Group led by Maria Blasco, who is also an author in the article. The research was also carried out in collaboration with the Experimental Therapeutics Programme, the Experimental Oncology Group and the Histopathology, Molecular Imaging and Microscopy Units at the CNIO, as well as with the Animal Medicine and Surgery Department at the Universidad Complutense de Madrid.

Every time a cell divides, it must duplicate its genetic material, the DNA, which is packed inside the chromosomes. However, given how the mechanism of DNA replication works, the end of each chromosome cannot be replicated completely, and, as a result, telomeres shorten with each cell division. Excessively short telomeres are toxic to cells, which stop replicating, and eventually, the cells are eliminated by senescence or apoptosis.

This phenomenon has been known for decades, as well as the fact that it usually does not occur in tumour cells. Cancer cells proliferate without any apparent limits, and therefore, they are constantly dividing, but their telomeres do not gradually become shorter; the key behind this mechanism is that the telomerase enzyme in cancer cells remains active, while in most healthy cells telomerase is turned off. The constant repair of telomeres by telomerase is, in fact, one of the mechanisms that allows tumour cells to be immortal and divide endlessly.

Hence, an obvious strategy to fight cancer is to inhibit the telomerase enzyme in tumour cells. This approach has been tested before, but with worrisome results: telomeres do shorten, but this shortening is lethal to tumour cells only after a variable number of cell divisions necessary for telomeres to become completely eroded-- thus the effects are not instantly seen.

In the study now published, the researchers also target telomeres, but their approach is completely different from the telomerase one.

A NEW APPROACH FOR THE ACUTE TELOMERE UNCAPPING

Telomeres are made up of repeating patterns of DNA sequences that are repeated hundreds of times -- this is the structure that shortens with each cellular division. Telomere DNA is bound by a six-protein complex, called shelterin (from the term shelter or protection), which forms a protective covering. The CNIO team strategy consisted of blocking one of the shelterins, namely TRF1, so that that the telomere shield was destroyed.

The idea of targeting one of the shelterins has not been tried so far, due to the fear of encountering many toxic effects caused by acting on these proteins that are present in both healthy and tumour cells.

"Nobody had explored the idea of using one of the shelterins as an anti-cancer target," explains Blasco. "It is difficult to find drugs that interfere with protein binding to DNA, and the possibility exists that drugs targeting telomere caps could be very toxic. For these reasons, no one had explored this option before, although it makes a lot of sense."

FEWER THAN EXPECTED SIDE-EFFECTS

The present work subtitled 'Shelterin as a novel target in cancer,' shows that blocking TRF1 only causes minor toxicities that are well tolerated by mice. "It does however prevent the growth of lung carcinomas already developed in mice," write the authors inEMBO Molecular Medicine.

"TRF1 removal induces an acute telomere uncapping, which results in cellular senescence or cell death. We have seen that this strategy kills cancer cells efficiently, stops tumour growth and has bearable toxic effects," explains Blasco.

TRF1 has been inhibited both genetically -- in mice where the gene has been removed -- and chemically using selected compounds from CNIO's proprietary collection of active compounds. These compounds, including the inhibitor ETP-470037 developed by the CNIO Experimental Therapeutics Programme, may provide a starting point for the development of new drugs for cancer therapy.

"We've shown that we can find potential drugs able to inhibit TRF1 that have therapeutic effects when administered orally to mice," says Blasco.

A CANCER WITH NO CURRENTLY AVAILABLE THERAPEUTIC TARGETS

The scientists worked with mouse models for lung cancer, the cancer type that has the highest death rates worldwide. Specifically, they used a mouse with a very aggressive type of lung cancer for which no drug targets have been found to date: the tumours have an active K-Ras oncogene and the p53 tumor suppressor is missing. TRF1 is the first target that is able to inhibit the growth of these highly aggressive tumours.

The work process has been long. The researchers first selected TRF1 among the shelterin family. TRF1 is one of the most studied shelterins that is present exclusively at the telomeres and has potential as a good anti-cancer target -- its inhibition also affects the so-called cancer stem cells that might be responsible for tumour recurrence over time.

The next aim was to demonstrate that TRF1 is really an anti-cancer target. To do so, the researchers genetically blocked its activity in mice with lung cancer as well as in healthy mice, in order to test the toxicity of the procedure.

Having established the effectiveness and low toxicity of the new target, the researchers searched for chemical compounds that could have activity against TRF1. Two types of compounds have been found. "We are now looking for partners in the pharmaceutical industry to bring this research into more advanced stages of drug development," says Blasco.

Source:

Centro Nacional de Investigaciones Oncologicas (CNIO)

Autoria e outros dados (tags, etc)

por cyto às 13:46


Mais sobre mim

foto do autor


Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Pesquisar

Pesquisar no Blog  

calendário

Fevereiro 2016

D S T Q Q S S
123456
78910111213
14151617181920
21222324252627
2829