Saltar para: Posts [1], Pesquisa e Arquivos [2]

http://cyto.blogs.sapo.pt

Espaço de publicação e discussão sobre oncologia. GBM IMMUNOTHERAPY ONCO-VIRUS ONCOLOGY CANCER CHEMOTHERAPY RADIOTHERAPY


Quarta-feira, 19.08.15

Inflammation from diets deficient in nutrients contribute to weight despite intake of macronutrients

 

Inflammation from diets deficient in nutrients contribute to weight despite intake of macronutrients

Published on August 6, 2015 at 8:41 AM ·

If you are watching what you eat, working out, and still not seeing improvements in your cholesterol, blood pressure, blood sugar, etc., here's some hope. A new report appearing in the August 2015 issue of The FASEB Journal suggests that inflammation induced by deficiencies in vitamins and minerals might be the culprit. In this report, researchers show that - in some people - improvement results in many of the major markers of health when nutritional deficiencies are corrected. Some even lost weight without a change in their diet or levels of activity.

"It is well known that habitual consumption of poor diets means increased risk of future disease, but clearly this is not a compelling enough reason for many to improve their eating habits," said Bruce Ames, Ph.D., a senior scientist at Children's Hospital Oakland Research Institute, director of their Nutrition and Metabolism Center, and a professor emeritus of Biochemistry and Molecular Biology at the University of California, Berkeley. "However, a relatively easy intervention with something like the nutrient bar used in this study may help people to realize the positive impact that a diet with adequate nutrition can have in their daily lives, which may be a stronger incentive for change."

To make their Ames and colleagues undertook three clinical trials in which adults ate two nutrient bars each day for two months. Participants acted as their own controls, meaning that changes in a wide variety of biochemical (e.g., HDL-c, LDL-c, insulin) and physical (e.g., blood pressure, weight) measurements were recorded in each individual over the two-month period. People who were overweight/obese moved in a healthier metabolic direction (e.g., improved HDL, LDL, insulin, glucose, etc.), and some lost weight by just eating small, low-calorie, nutrient bars each day for two months, without any additional requirements.

"If being healthy was as simple as 'losing weight' or 'keeping thin,' our ancient ancestors who lived in times of extreme food scarcity might still be with us today," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This report shows that what you eat is as important, if not more, than how much you eat and how many calories you burn in the gym."

Source:

Federation of American Societies for Experimental Biology

Autoria e outros dados (tags, etc)

por cyto às 11:56

Sábado, 25.07.15

Clear Connection between Wireless Devices and Cancer

 

Study Suggests Clear Connection between Wireless Devices and Cancer

24 July 2015 Taylor & Francis

 

A metabolic imbalance caused by radiation from your wireless devices could be the link to a number of health risks, such as various neurodegenerative diseases and cancer, a recent study suggests.

“Oxidative Mechanisms of Biological Activity of Low-intensity Radiofrequency Radiation,” a review article published in Electromagnetic Biology & Medicine, explores experimental data on the metabolic effects of low-intensity radiofrequency radiation in living cells.

This imbalance, also known as oxidative stress, is defined by co-author Dr. Igor Yakymenko as, “an imbalance between the production of reactive oxygen species (ROS) and antioxidant defence.”

Yakymenko explains the oxidative stress due to RFR exposure could explain not only cancer, but also other minor disorders such as headache, fatigue, and skin irritation, which could develop after long-term RFR exposure.

“These data are a clear sign of the real risks this kind of radiation poses for human health,” Yakymenko said. 

The article explains that ROS are often produced in cells due to aggressive environments, and can also be provoked by “ordinary wireless radiation.”

Up-to-date research demonstrates possible carcinogenic effects of radiofrequency (RFR)/microwave radiation. In 2011, the International Agency for Research on Cancer classified RFR as a possible carcinogen for humans. But clear molecular mechanisms of such effects of RFR were a bottleneck in acceptance of a reality of risk.

The article demonstrates that the hazardous effects of RFR could be realized through the “classical mechanisms” of oxidative impairments in living cells.

Yakymenko and his colleagues call for a precautionary approach in using wireless technologies, such as cell phones and wireless Internet.

 

http://informahealthcare.com/stoken/default+domain/IEBM_Press_7.2015/abstract/10.3109/15368378.2015.1043557

Autoria e outros dados (tags, etc)

por cyto às 02:01

Terça-feira, 21.07.15

Scientists elucidate which mechanisms block natural killer cells and how this could be lifted

 

Scientists elucidate which mechanisms block natural killer cells and how this could be lifted

Published on July 8, 2015 at 12:00 PM 

Natural killer cells of the immune system can fend off malignant lymphoma cells and thus are considered a promising therapeutic approach. However, in the direct vicinity of the tumor they lose their effect. Scientists of Helmholtz Zentrum München have now elucidated which mechanisms block the natural killer cells and how this blockade could be lifted. The results were recently published in the European Journal of Immunology.

Natural killer cells (NK cells) are part of the immune system and provide an innate immunity against exogenous and altered endogenous structures. This also appears to apply to tumor cells, against which the body could develop immunity as it does against pathogens, e.g. against viruses. Tumors of the lymph nodes, called lymphomas, are malignant neoplasms that originate from the B cells or T cells of the lymphatic system. B cell lymphomas are very difficult to treat - which is why innovative approaches to therapy are needed. Earlier studies have shown that NK cells have the potential to attack B lymphoma cells and are therefore considered a possible approach to new treatment strategies. In the living organism, however, tumor control by NK cells has been found to be clearly limited.

NK cells become functionally impaired in the tumor microenvironment

In their experiments, the team led by Prof. Dr. Ralph Mocikat of the Institute of Molecular Immunology (IMI) at Helmholtz Zentrum München, found that the NK cells in the immediate vicinity of the tumor showed reduced function. If the cells were placed in a normal environment, their function could be restored within a few hours. This suggests that the factors responsible for the inactivation of the NK cells derive from the tumor itself.

An inflammatory cytokine inactivates NK cells - altered surface molecules block immune activation

The scientists engaged in the research project identified two important tumor-specific factors that are associated with impaired NK cell function. First, a specific inflammatory cytokine (IL-10) is indirectly involved in the inactivation of NK cells. Second, the tumor cells develop protective mechanisms against the NK cells. Thus, the research group showed that specific surface molecules of the tumor cells (NKG2D ligands) which NK cells could bind are down-regulated. Consequently, the NK cells lack an important activation mechanism and are no longer able to carry out cytotoxic activity. Despite the inhibitory strategies of the tumor cells, at an early stage the NK cells produce the cytokine interferon-gamma (IFN-γ), the scientists reported. IFN-γ is essential to activate further immune responses that support the fight against the tumor.

Immunotherapy possible using NK cells - with optimization potential

"Our results show that the transfer of NK cells is a possible strategic option to treat B cell lymphoma. According to our findings, this therapeutic approach can be optimized when transferred NK cells are already activated in vitro prior to their injection, thus bypassing the missing activation potential in the tumor microenvironment. An additional injection of IFN-γ or of antibodies against IL-10 could further support the immune activity," said study leader Mocikat.

Source:

Helmholtz Zentrum München - German Research Center for Environmental Health

Autoria e outros dados (tags, etc)

por cyto às 18:20

Terça-feira, 21.07.15

Study stresses importance of investigating telomeres to improve diagnoses, develop treatments for many diseases

 

Study stresses importance of investigating telomeres to improve diagnoses, develop treatments for many diseases

Published on July 16, 2015 at 3:04 AM 

Studying telomeres, the structures that protect the ends of chromosomes, has become a key issue in biology. In recent years, not only has their relation to ageing been confirmed; defective telomeres seem to be linked to more and more illnesses, including many types of cancer. The review published by Paula Martínez and María Blasco from the CNIO in Trends in Biochemical Sciences, stresses the importance of investigating these structures to improve diagnoses and develop possible treatments for many diseases. Telomeres, in the opinion of these researchers, will become increasingly important in clinical studies.

The chromosomes in every single cell are made up of DNA and shaped like strands, with a kind of protective cap at the end of each strand of DNA. Without this end protective cap, the DNA strands would chemically bond to other strands, i.e. the chromosomes would merge and that would be lethal for the cell. The structures that prevent this catastrophe are the telomeres. They were discovered in the 1930s but decades elapsed before someone decided to study them in any depth and since the late 1990s they have always been on the cutting edge of biology research. Biologists are often surprised by their amazing and unexpected complexity, and their health-related significance.

"The biology of telomeres is extremely complex and the more we discover the more we realise what remains to be discovered", says Paula Martínez from CNIO's Telomere and Telomerase Group. "What surprises me most is the high number of factors we are finding that are essential to the preservation of telomeres and, above all, the precise coordination that is required between them all".

The fact that telomeres have been tightly preserved throughout the evolutionary tree -in most eukaryotes: vertebrates, plants and even unicellular organisms such as yeast- indicates their importance. In addition to preventing the merger of chromosomes, telomeres are needed to prevent the loss of genetic information each time a cell divides.

PREVENTING INFORMATION LOSS

When a cell replicates, the molecular machinery in charge of duplicating the chromosomes - so that each daughter cell has a copy -cannot reach the tip. This is inherently impossible due to the way the DNA replication machinery works, and it implies that any genetic material at the end of a chromosome with significant information for the cell would be lost. Telomeres prevent this from happening: they consist of a DNA sequence that does not contain genes and that is repeated numerous times- in humans and other species the sequence is TTAGGG; the letters correspond to three of the building blocks that make up the DNA: thymine, adenine and guanine.

Consequently, the shortening of the DNA with every division is not significant. At least not until a certain limit is reached. When the telomeres become too short, we see the problems associated with ageing: cells reach a point where they interpret critically short telomeres as irreparable damage and react by no longer dividing, which prevents tissue from regenerating.

This happens in healthy cells but not in cancer cells. There is an enzyme, telomerase, which is capable of lengthening the telomeres de novo. This enzyme is not present in most cells of an adult organism but it is active in tumour cells. By repairing the telomeres, the telomerase enables cancer cells to proliferate and become virtually immortal.

This link to ageing and cancer, has led to the intense study of telomere-based strategies to combat cancer and diseases associated with ageing. Blasco's group has recently shown that it is possible to make cancer cells mortal by acting on the telomeres.

ZOOMING IN TO THE TIP OF THE BUFFER

The above-mentioned description of telomeres however is a simplified version of the story. We now know that there is a protective structure enveloping telomeric DNA consisting of six proteins known as shelterins, which are crucial. Another more recent discovery is that there are proteins that, although not in the telomeres themselves, interact with them at specific times to enable them to perform their functions.

These proteins enable the telomeres to unwind, for example; because, the sequence repeated in telomeres, TTAGGG, ends in a single strand of DNA that curves forming a loop and connects to the original strand of the double chain forming a triple chain. "Yes, it is very complicated", admits Martínez. "Structures of up to four chains of DNA can form".

When a cell divides, the telomeres are also replicated. This implies that the end loop must unwind first and then form again. This process also contributes to the shortening of telomeres and we now know that some of the shelterins as well as other associated proteins that interact with telomeres are key elements in this process.

TELOMERE SYNDROMES

According to Martínez, "there is now more evidence about relationship between telomere maintenance and several illnesses".

Telomere syndromes, or telomeropathies, have been identified in patients with mutations of the telomerase enzyme. This group includes, for example, pulmonary fibrosis and problems related to the malfunction of the bone marrow. A direct relationship between telomere dysfunctions and many types of cancer has also been found. More recently, we have also discovered that mutations of the proteins that protect telomeric DNA, the shelterins, and those that interact with the telomeres, are linked to various diseases, such as dyskeratosis congenita, Hoyeraal-Hreidarsson syndrome or Revesz syndrome.

"These discoveries underline the plethora of components and pathways that control telomere functions", write the authors in the paper. "In the future, research will bring to light more unknown factors that will improve our understanding of the mechanisms governing cancer and syndromes linked to the shortening of telomeres. We hope that this knowledge will be transferred to the clinic in order to improve the diagnosis and treatment of diseases".

Source:

Centro Nacional de Investigaciones Oncologicas (CNIO)

Autoria e outros dados (tags, etc)

por cyto às 18:18

Terça-feira, 21.07.15

Novel cancer drug candidate developed in Singapore advances into clinical trials

 

Novel cancer drug candidate developed in Singapore advances into clinical trials

Published on July 17, 2015 at 2:01 AM

A made-in-Singapore cancer drug has advanced into clinical trials, charting a milestone in Singapore's biomedical sciences initiative that will go towards improving the lives of cancer patients in Singapore, and worldwide. The Agency for Science, Technology and Research (A*STAR) and Duke-National University of Singapore Graduate Medical School (Duke-NUS) today announced the start of a Phase I clinical trial of novel cancer drug candidate, ETC-159. This is the first publicly-funded drug candidate discovered and developed in Singapore to advance into first-in-human trials, and will target a range of cancers. Overall, cancer is the leading cause of death in Singapore, accounting for 30 percent of deaths in 2013. Cancer has also resulted in 8.2 million deaths world-wide .

ETC-159 targets a number of cancers including colorectal, ovarian and pancreatic cancers which contribute to a significant proportion of Singapore's cancer burden. These cancers are linked to a group of cell signalling pathways known as Wnt signalling, that have been identified to promote cancer growth and spread when elevated or dysregulated. As ETC-159 is an inhibitor of these pathways, it could suppress cancer proliferation and prevent cancer progression.

This drug candidate therefore offers a promising novel and targeted cancer therapy that could shape future cancer therapeutic strategies.

ETC-159 was discovered and developed through a collaboration between A*STAR's Experimental Therapeutics Centre (ETC), Drug Discovery and Development (D3) unit and Duke-NUS since 2009. This was based on the discovery work of Prof David Virshup from Duke-NUS, who has continued to contribute to the development of the drug candidate.

The Phase I clinical trial will evaluate the safety and tolerability of ETC-159 in advanced solid tumours of up to 58 patients. The first patient was dosed on 18 June 2015.

Dr Benjamin Seet, Executive Director of A*STAR's Biomedical Research Council, said, "This breakthrough, which closely follows local company MerLion Pharmaceuticals' recent success in obtaining FDA approval for one of its drugs, marks an inflection point in Singapore's biomedical sciences initiative. Despite the protracted process of drug discovery and development, I am confident that we will see more locally developed drugs in the pipeline being tested and implemented."

Prof Ranga Rama Krishnan, Chairman of the National Medical Research Council (NMRC), Singapore, said, "The first dosing of a drug developed by A*STAR based on a scientific discovery by Duke-NUS researchers, is an example of the terrific and exciting progress that has been made when different entities come together to work on a common problem. This will lead to developing new treatments that can benefit patients in Singapore and beyond."

Prof Alex Matter, Chief Executive Officer of ETC and D3 said, "The discovery and subsequent development of this drug candidate marks a major breakthrough in cancer therapeutics. It also demonstrates the world-class drug discovery and development capabilities we have built up at ETC and D3, complemented by valued partners like Duke-NUS. We will continue to strengthen these capabilities and partnerships to continue developing a pipeline of promising drug candidates and advancing them into the clinic."

Prof David Virshup, inaugural Director of the Programme in Cancer and Stem Cell Biology at Duke-NUS, said, "As the drug candidate provides a targeted cancer therapy, it could potentially minimise side effects and make cancer treatments more bearable for cancer patients. This is a major milestone that was made possible by Singapore's ongoing investment in basic and translational biomedical research to address unmet medical needs. It is fitting that Singaporeans might be the first to benefit from this Singapore-developed drug."

A*STAR's ETC and Duke-NUS are the primary drivers of the discovery and development of the drug candidate. D3 joined the collaboration in 2013 to bring the project forward to achieve proof of concept in humans.

D3 has obtained ethics and regulatory approval for this trial from the SingHealth Centralised Institutional Review Board (CIRB) and the Singapore Health Sciences Authority (HSA) respectively. The first two sites for the trial are the National Cancer Centre Singapore (NCCS) and the National University Hospital (NUH), Singapore. Trial sites in the United States will be opened as the trial progresses.

Source:

Biomedical Sciences Institutes (BMSI)

Autoria e outros dados (tags, etc)

por cyto às 18:15

Terça-feira, 21.07.15

Single molecule appears to be central regulator driving cancer metastasis

 

Single molecule appears to be central regulator driving cancer metastasis

Published on July 14, 2015 at 6:21 AM · 

Cancer is a disease of cell growth, but most tumors only become lethal once they metastasize or spread from their first location to sites throughout the body. For the first time, researchers at Thomas Jefferson University in Philadelphia report a single molecule that appears to be the central regulator driving metastasis in prostate cancer. The study, published online July 13th in Cancer Cell, offers a target for the development of a drug that could prevent metastasis in prostate cancer, and possibly other cancers as well.

"Finding a way to halt or prevent cancer metastasis has proven elusive. We discovered that a molecule called DNA-PKcs could give us a means of knocking out major pathways that control metastasis before it begins," says Karen Knudsen, Ph.D., Director of the Sidney Kimmel Cancer Center at Thomas Jefferson University, the Hilary Koprowski Professor and Chair of Cancer Biology, Professor of Urology, Radiation Oncology, and Medical Oncology at Jefferson.

Metastasis is thought of as the last stage of cancer. The tumor undergoes a number of changes to its DNA - mutations - that make the cells more mobile, able to enter the bloodstream, and then also sticky enough to anchor down in a new location, such as the bone, the lungs, the liver or other organs, where new tumors start to grow. Although these processes are fairly well characterized, there appeared to be many non-overlapping pathways that ultimately lead to these traits.

Now, Dr. Knudsen and colleagues have shown that one molecule appears to be central to many of the processes required for a cancer to spread. That molecule is a DNA repair kinase called DNA-PKcs. The kinase rejoins broken or mutated DNA strands in a cancer cell, acting as a glue to the many broken pieces of DNA and keeping alive a cell that should normally self-destruct. In fact, previous studies had shown that DNA-PKcs was linked to treatment resistance in prostate cancer, in part because it would repair the usually lethal damage to tumors caused by radiation therapy and other treatments. Importantly, Dr. Knudsen's work showed that DNA-PKcs has other, far-reaching roles in cancer.

The researchers showed that DNA-PKcs also appears act as a master regulator of signaling networks that turn on the entire program of metastatic processes. Specifically, the DNA-PKcs modulates the Rho/Rac enzyme, which allows many cancer cell types to become mobile, as well as a number of other gene networks involved in other steps in the metastatic cascade, such as cell migration and invasion.

In addition to experiments in prostate cancer cell lines, Dr. Knudsen and colleagues also showed that in mice carrying human models of prostate cancer, they could block the development of metastases by using agents that suppress DNA-PKcs production or function. And in mice with aggressive human tumors, an inhibitor of DNA-PKcs reduced overall tumor burden in metastatic sites.

In a final analysis that demonstrated the importance of DNA-PKcs in human disease, the researchers analyzed 232 samples from prostate cancer patients for the amount of DNA-PKcs those cells contained and compared those levels to the patients' medical records. They saw that a spike in the kinase levels was a strong predictor of developing metastases and poor outcomes in prostate cancer. They also showed that DNA-PKcs was much more active in human samples of castrate-resistant prostate cancer, an aggressive and treatment-resistant form of the disease.

"These results strongly suggest that DNA-PKcs is a master regulator of the pathways and signals that lead to the development of metastases in prostate cancer, and that high levels of DNA-PKcs could predict which early stage tumors may go on to metastasize," says Dr. Knudsen.

"The finding that DNA-PKcs is a likely driver of lethal disease states was unexpected, and the discovery was made possible by key collaborations across academia and industry," explains Dr. Knudsen. Key collaborators on the study, in addition to leaders of the Sidney Kimmel Cancer Center's Prostate Program, included the laboratories of Felix Feng (University of Michigan), Scott Tomlins (University of Michigan), Owen Witte (UCLA), Cory Abate-Shen (Columbia University), Nima Sharifi (Cleveland Clinic) and Jeffrey Karnes (Mayo Clinic), and contributions from GenomeDx.

Although not all molecules are easily turned into drugs, at least one pharma company has already developed a drug that inhibits DNA-PKcs, and is currently testing it in a phase 1 study (NCT01353625). "We are enthusiastic about the next step of clinical assessment for testing DNA-PKcs inhibitors in the clinic. A new trial will commence shortly using the Celgene CC-115 DNA-PKcs inhibitor. This new trial will be for patients advancing on standard of care therapies, and will be available at multiple centers connected through the Prostate Cancer Clinical Trials Consortium, of which we are a member," explained Dr. Knudsen.

"Although the pathway to drug approval can take many years, this new trial will provide some insight into the effect of DNAP-PKcs inhibitors as anti-tumor agents. In parallel, using this kinase as a marker of severe disease may also help identify patients whose tumors will develop into aggressive metastatic disease, so that we can treat them with more aggressive therapy earlier," says Dr. Knudsen. "Given the role of DNA-PKcs in DNA repair as well as control of tumor metastasis, there will be challenges in clinical implementation, but this discovery unveils new opportunities for preventing or treating advanced disease."

Source:

Thomas Jefferson University

Autoria e outros dados (tags, etc)

por cyto às 18:05

Sábado, 04.07.15

new protein that affects growth of secondary breast tumours in the brain

Scientists identify new protein that affects growth of secondary breast tumours in the brain

Published on July 1, 2015 at 7:19 AM 

Scientists from the University of Leeds and The Institute of Cancer Research, London, have discovered a new protein which triggers the growth of blood vessels in breast cancer tumours which have spread to the brain, a common location which breast cancer can spread to.

Dr Georgia Mavria's team in the School of Medicine at Leeds found that by withholding the DOCK4 protein in mouse models, a particular part of the blood vessel did not form as quickly, meaning tumours grew at a slower rate.

Dr Mavria said: "We want to understand how these tumours form and grow, but we still need to do more research to stop these tumours growing altogether.

"The finding gives an important indicator of how the protein affects the growth of secondary breast tumours in the brain. The discovery could also enable experts to predict which patients might be at risk of their breast cancer spreading, and develop drugs to prevent the growth of secondary tumours."

Working with Professor Chris Marshall, Professor of Cell Biology at The Institute of Cancer Research, London and the late Dr Tony Pawson at the Lunenfeld-Tanenbaum Research Institute in Toronto, researchers found that a complex of two related proteins, DOCK4 and DOCK9, is critical in the formation of the lumen, the interior space of a vessel through which blood flows.

By impeding the speed at which the lumen forms, tumours are not fed as effectively by blood vessels.

Normally, when breast cancer spreads to other parts of the body, it forces new blood vessels to form to supply it with nutrients and oxygen to help it to grow, resulting in tumours that are very difficult to treat.

Professor Marshall said: "Our study reveals new insights into how the complex process of forming blood vessels is controlled. This knowledge could lead to new approaches to preventing the blood supply to tumours and metastases. If we can find new ways to reduce the blood supply to tumours, we might be able to find new ways to slow cancer growth in future."

The research, which has been published in Nature Communications, was funded by Breast Cancer Now, Yorkshire Cancer Research and Cancer Research UK.

Dr Matthew Lam, Senior Research Communications Officer at Breast Cancer Now, said: "These findings could one day help us better identify and treat patients that might be at risk of their breast cancer spreading to the brain, a particularly common site for metastasis.

"12,000 women have their lives cut short by breast cancer in the UK each year. An understanding of what is happening on a molecular level - such as the role played by DOCK proteins - will be essential if we are to find ways to prevent secondary tumours and finally stop women dying from the disease."

Kathryn Scott, Head of Research and Innovation at Yorkshire Cancer Research, said: "Tumours need blood vessels to grow, but these blood vessels could be the cancer's weakest link because it is believed that they are less able to become resistant to drugs than the cancer cells themselves. Targeting drugs to the blood vessels that are serving the tumour rather than the tumour itself is an exciting new area of research and we are supporting a number of projects in Yorkshire which are investigating this approach."

Dr Aine McCarthy, Science Information Officer at Cancer Research UK, said: "This research shows for the first time that a molecule called DOCK4 is a key player in tumour blood vessel development and blocking it could slow tumour growth by starving the cancer cells. But the study was carried out in mice, so more research is needed to see if drugs can be developed that target the molecule and whether this approach would be safe and effective in people with cancer."

Source:

University of Leeds

Autoria e outros dados (tags, etc)

por cyto às 11:34

Sábado, 04.07.15

new immunotherapy treatment for cancer patients

 

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

Published on June 27, 2015 at 2:15 AM · 

Cancer Treatment Centers of America® (CTCA) at Western Regional Medical Center (Western) in Goodyear, Arizona, has begun a new Phase Ib/II clinical trial using a new immunotherapy treatment for patients with advanced kidney, non-small cell lung cancer, pancreatic cancer and colorectal carcinoma.

This "NivoPlus" clinical trial combines an immunotherapy drug (nivolumab) with already FDA-approved chemotherapy drugs (temsirolimus, irinotecan, and a combination of irinotecan and capecitabine).

The addition of nivolumab is intended to activate the body's own immune system to improve on the results that otherwise might not be achieved from chemotherapy alone. This combination of chemotherapy and immunotherapy drugs is investigational in this study and is the third such combination clinical trial launched in the past year by CTCA® at Western.

There are anticipated to be up to 49 patients enrolled on the multi-arm NivoPlus study. The first patient received treatment on this study earlier this month.

"Some of these drug combinations are not available elsewhere, giving CTCA patients additional treatment options," said Dr. Glen Weiss, Director of Clinical Research and Medical Oncologist, CTCA at Western. "Our ultimate goal is to evaluate if these combinations yield improved results for our patients."

Nivolumab works by inhibiting a protein called PD-1, which otherwise blocks the body's immune system from attacking cancerous cells.

Nivolumab was approved by the Food and Drug Administration in December 2014 for the treatment of advanced melanoma and on March 4, 2015, for patients with previously treated metastatic squamous non-small cell lung cancer.

"Patients with these types of advanced-stage cancers have tumors that may be challenging to treat," said Dr. Vivek Khemka, Medical Oncologist, CTCA Western and NivoPlus Principal Investigator. "We are investigating whether combining nivolumab with these chemotherapy drugs will be a more powerful approach against their disease."

Recent data reported in the New England Journal of Medicine and Lancet demonstrates promising results with antibody-based immunostimulatory therapy in treating melanoma, renal cell carcinoma, non-small cell lung cancer and colorectal cancer. Data has also shown synergetic effects of utilizing cytotoxic chemotherapy in combination with immunostimulatory therapy. NivoPlus will build upon this data, extending treatment options to additional cancer types.

CTCA investigators have been actively researching the impact of immunotherapy, a topic prominently highlighted this year at the annual conferences of both the American Association for Cancer Research (AACR) and the American Society of Clinical Oncologists (ASCO).

At AACR, physicians described immunotherapy as now being considered an integral part of cancer biology and cancer treatment, and recent clinical successes were described as "stunning" and "unprecedented" in their ability to improve the care of cancer patients.

At ASCO, a full press briefing was devoted to the subject of immunotherapy, which was described by doctors as "one of the most exciting advances in oncology," enabling the body's own immune system to target cancer tumors and key to helping accelerate the pace of progress "and ultimately achieve cures for cancer."

Additionally, in 2013, Science magazine named cancer immunotherapy the scientific breakthrough of the year.

CTCA physicians are committed to bringing the latest technologies and advanced treatment options to their patients as quickly as possible. At the same time, CTCA patients are supported with therapies to reduce side effects, boost energy levels and keep them strong during treatment.

Source:

Cancer Treatment Centers of America

Autoria e outros dados (tags, etc)

por cyto às 11:18

Quinta-feira, 02.07.15

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

CTCA at Western begins Phase Ib/II trial of new immunotherapy treatment for cancer patients

Published on June 27, 2015 at 2:15 AM · 

Cancer Treatment Centers of America® (CTCA) at Western Regional Medical Center (Western) in Goodyear, Arizona, has begun a new Phase Ib/II clinical trial using a new immunotherapy treatment for patients with advanced kidney, non-small cell lung cancer, pancreatic cancer and colorectal carcinoma.

This "NivoPlus" clinical trial combines an immunotherapy drug (nivolumab) with already FDA-approved chemotherapy drugs (temsirolimus, irinotecan, and a combination of irinotecan and capecitabine).

The addition of nivolumab is intended to activate the body's own immune system to improve on the results that otherwise might not be achieved from chemotherapy alone. This combination of chemotherapy and immunotherapy drugs is investigational in this study and is the third such combination clinical trial launched in the past year by CTCA® at Western.

There are anticipated to be up to 49 patients enrolled on the multi-arm NivoPlus study. The first patient received treatment on this study earlier this month.

"Some of these drug combinations are not available elsewhere, giving CTCA patients additional treatment options," said Dr. Glen Weiss, Director of Clinical Research and Medical Oncologist, CTCA at Western. "Our ultimate goal is to evaluate if these combinations yield improved results for our patients."

Nivolumab works by inhibiting a protein called PD-1, which otherwise blocks the body's immune system from attacking cancerous cells.

Nivolumab was approved by the Food and Drug Administration in December 2014 for the treatment of advanced melanoma and on March 4, 2015, for patients with previously treated metastatic squamous non-small cell lung cancer.

"Patients with these types of advanced-stage cancers have tumors that may be challenging to treat," said Dr. Vivek Khemka, Medical Oncologist, CTCA Western and NivoPlus Principal Investigator. "We are investigating whether combining nivolumab with these chemotherapy drugs will be a more powerful approach against their disease."

Recent data reported in the New England Journal of Medicine and Lancet demonstrates promising results with antibody-based immunostimulatory therapy in treating melanoma, renal cell carcinoma, non-small cell lung cancer and colorectal cancer. Data has also shown synergetic effects of utilizing cytotoxic chemotherapy in combination with immunostimulatory therapy. NivoPlus will build upon this data, extending treatment options to additional cancer types.

CTCA investigators have been actively researching the impact of immunotherapy, a topic prominently highlighted this year at the annual conferences of both the American Association for Cancer Research (AACR) and the American Society of Clinical Oncologists (ASCO).

At AACR, physicians described immunotherapy as now being considered an integral part of cancer biology and cancer treatment, and recent clinical successes were described as "stunning" and "unprecedented" in their ability to improve the care of cancer patients.

At ASCO, a full press briefing was devoted to the subject of immunotherapy, which was described by doctors as "one of the most exciting advances in oncology," enabling the body's own immune system to target cancer tumors and key to helping accelerate the pace of progress "and ultimately achieve cures for cancer."

Additionally, in 2013, Science magazine named cancer immunotherapy the scientific breakthrough of the year.

CTCA physicians are committed to bringing the latest technologies and advanced treatment options to their patients as quickly as possible. At the same time, CTCA patients are supported with therapies to reduce side effects, boost energy levels and keep them strong during treatment.

Autoria e outros dados (tags, etc)

por cyto às 11:56


Mais sobre mim

foto do autor


Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Pesquisar

Pesquisar no Blog  

calendário

Fevereiro 2016

D S T Q Q S S
123456
78910111213
14151617181920
21222324252627
2829